6,285 research outputs found

    Influence of thresholding in mass and entropy dimension of 3-D soil images

    Get PDF
    With the advent of modern non-destructive tomography techniques, there have been many attempts to analyze 3-D pore space features mainly concentrating on soil structure. This analysis opens a challenging opportunity to develop techniques for quantifying and describe pore space properties, one of them being fractal analysis. Undisturbed soil samples were collected from four horizons of Brazilian soil and 3-D images at 45μm resolution. Four different threshold criteria were used to transform computed tomography (CT) grey-scale imagery into binary imagery (pore/solid) to estimate their mass fractal dimension (Dm) and entropy dimension (D1). Each threshold criteria had a direct influence on the porosity obtained, varying from 8 to 24% in one of the samples, and on the fractal dimensions. Linear scaling was observed over all the cube sizes, however depending on the range of cube sizes used in the analysis, Dm could vary from 3.00 to 2.20, realizing that the threshold influenced mainly the scaling in the smallest cubes (length of size from 1 to 16 voxels). Dm and D1 showed a logarithmic relation with the apparent porosity in the image, however, the increase of both values respect to porosity defined a characteristic feature for each horizon that can be related to soil texture and depth

    Uric Acid and Chronic Kidney Disease: Still More to Do

    Get PDF
    Gout and hyperuricemia are present in 25% and 60% of patients with chronic kidney disease (CKD), respectively. Despite the common association, the role of uric acid in the progression of kidney disease and in metabolic complications remains contested. Some authorities argue that the treatment of asymptomatic hyperuricemia in CKD is not indicated, and some have even suggested hyperuricemia may be beneficial. Here, we review the various arguments both for and against treatment. The weight of the evidence suggests asymptomatic hyperuricemia is likely injurious, but it may primarily relate to subgroups, those who have systemic crystal deposits, those with frequent urinary crystalluria or kidney stones, and those with high intracellular uric acid levels. We recommend carefully designed clinical trials to test if lowering uric acid in hyperuricemic subjects with cardiometabolic complications is protective

    Are women residency supervisors obligated to nurture?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73923/1/j.1365-2929.2006.02635.x.pd

    Toxicological evaluation of lactose and chitosan delivered by inhalation

    Get PDF
    These days, inhalation constitutes a promising administration route for many drugs. However, this route exhibits unique limitations, and formulations aimed at pulmonary delivery should include as few as possible additives in order to maintain lung functionality. The purpose of this work was to investigate the safety of lactose and chitosan to the pulmonary tissue when delivered by inhalation. The study was carried out with 18 Wistar rats divided in three groups receiving distilled water, lactose or chitosan. A solution of each excipient was administered by inhalation at a dose of 20 mg. The lungs were excised and processed to determine several biochemical parameters used as toxicity biomarkers. Protein and carbonyl group content, lipid peroxidation, reduced and oxidized glutathione ( GSSG), myeloperoxidase ( MPO), cooper/zinc and manganese superoxide dismutase, catalase, glutathione S-transferase and glutathione peroxidase were determined. Results of myeloperoxidase activity and glutathione disulfide lung concentrations showed a relevant decrease for chitosan group compared to control: 4.67 +/- 2.27 versus 15.10 +/- 7.27 ( P = 0.011) for MPO and 0.89 +/- 0.68 versus 2.02 +/- 0.22 ( P = 0.014) for GSSG. The other parameters did not vary significantly among groups. Lactose and chitosan administered by inhalation failed to show toxic effects to the pulmonary tissue. A protective effect against oxidative stress might even be attributed to chitosan, since some biomarkers had values significantly lower than those observed in the control group when this product was inhaled. Nevertheless, caution must be taken regarding chemical composition and technological processes applied to incorporate these products during drug formulation, in particular for dry powder inhalators

    Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation

    Get PDF
    FUNDING AND DISCLOSURE The research was funded by Wellcome Trust (WT098012) to LKH; and National Institute of Health (DK056731) and the Marilyn H. Vincent Foundation to MGM. The University of Michigan Transgenic Core facility is partially supported by the NIH-funded University of Michigan Center for Gastrointestinal Research (DK034933). The remaining authors declare no conflict of interest. ACKNOWLEDGMENTS We thank Dr Celine Cansell, Ms Raffaella Chianese and the staff of the Medical Research Facility for technical assistance. We thank Dr Vladimir Orduña for the scientific advice and technical assistance.Peer reviewedPublisher PD

    Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Get PDF
    CD4(+) T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i) that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+) cells, and (ii) that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+) compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+) T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p) and disappearance (d*) rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul) participated. CCR5-expression defined a CD4(+) subpopulation of predominantly CD45R0(+) memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+) vs CCR5(-); healthy controls; P<0.01). Conversely, CXCR4 expression defined CD4(+) T-cells (predominantly CD45RA(+) naive cells) with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+)CD45R0(+)CD4(+) memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05), naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9) or X4-tropic (n = 4). Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively). Our data are most consistent with models in which CD4(+) T-cell loss is primarily driven by non-specific immune activation

    Novel role of extracellular matrix protein 1 (ECM1) in cardiac aging and myocardial infarction

    Full text link
    © 2019 Hardy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Introduction The prevalence of heart failure increases in the aging population and following myocardial infarction (MI), yet the extracellular matrix (ECM) remodeling underpinning the development of aging- and MI-associated cardiac fibrosis remains poorly understood. A link between inflammation and fibrosis in the heart has long been appreciated, but has mechanistically remained undefined. We investigated the expression of a novel protein, extracellular matrix protein 1 (ECM1) in the aging and infarcted heart. Methods Young adult (3-month old) and aging (18-month old) C57BL/6 mice were assessed. Young mice were subjected to left anterior descending artery-ligation to induce MI, or transverse aortic constriction (TAC) surgery to induce pressure-overload cardiomyopathy. Left ventricle (LV) tissue was collected early and late post-MI/TAC. Bone marrow cells (BMCs) were isolated from young healthy mice, and subject to flow cytometry. Human cardiac fibroblast (CFb), myocyte, and coronary artery endothelial & smooth muscle cell lines were cultured; human CFbs were treated with recombinant ECM1. Primary mouse CFbs were cultured and treated with recombinant angiotensin-II or TGF-β1. Immunoblotting, qPCR and mRNA fluorescent in-situ hybridization (mRNA-FISH) were conducted on LV tissue and cells. Results ECM1 expression was upregulated in the aging LV, and in the infarct zone of the LV early post-MI. No significant differences in ECM1 expression were found late post-MI or at any time-point post-TAC. ECM1 was not expressed in any resident cardiac cells, but ECM1 was highly expressed in BMCs, with high ECM1 expression in granulocytes. Flow cytometry of bone marrow revealed ECM1 expression in large granular leucocytes. mRNA-FISH revealed that ECM1 was indeed expressed by inflammatory cells in the infarct zone at day-3 post-MI. ECM1 stimulation of CFbs induced ERK1/2 and AKT activation and collagen-I expression, suggesting a pro-fibrotic role. Conclusions ECM1 expression is increased in ageing and infarcted hearts but is not expressed by resident cardiac cells. Instead it is expressed by bone marrow-derived granulocytes. ECM1 is sufficient to induce cardiac fibroblast stimulation in vitro. Our findings suggest ECM1 is released from infiltrating inflammatory cells, which leads to cardiac fibroblast stimulation and fibrosis in aging and MI. ECM1 may be a novel intermediary between inflammation and fibrosis

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated
    corecore